CSC D70:
Compiler Optimization
Parallelization

Prof. Gennady Pekhimenko
University of Toronto
Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Tarek Abdelrahman

Announcements

* Final exam: Monday, April 15,
2:00-4:00pm; Room: 1C200

 Covers the whole semester

e Course evaluation (right now)

Data Dependence

S : A=10

S, B=A+20

S, A=C-D
]

S, A=B/C

We define four types of data dependence.

e Flow (true) dependence: a statement S, precedes a statement Sj in
execution and S, computes a data value that SJ. uses.

o Implies that S. must execute before Sj.

53'S, (5,8'S, and S,3'S,)

Data Dependence

S : A=10

S, B=A+20

S, A=C-D
]

S, A=B/C

We define four types of data dependence.

e Antidependence: a statement S, precedes a statement SJ. in execution
and S, uses a data value that Sj computes.

o Itimplies that S. must be executed before Sj.

53°S, (5,5°S,)

Data Dependence

S : A=10

S, B=A+20

S, A=C-D
]

S, A=B/C

We define four types of data dependence.

o Output dependence: a statement S, precedes a statement Sj in
execution and S, computes a data value that SJ. also computes.

o Itimplies that S. must be executed before Sj.

58S, (5,8°S, and S5,8°S,)

Data Dependence

S : A=10

S, B=A+20

S, A=C-D
]

S, A=B/C

We define four types of data dependence.

e Inputdependence: a statement S, precedes a statement Sj in
execution and S, uses a data value that Sj also uses.

o Does this imply that S, must execute before Sj?

58S, (5,8°S,)

Data Dependence (continued)

* The dependence is said to flow from S. to S because S,
precedes S in execution.

* S is said to be the source of the dependence. S is said to be
the sink of the dependence.

 The only “true” dependence is flow dependence; it represents
the flow of data in the program.

* The other types of dependence are caused by programming
style; they may be eliminated by re-naming.

S : A=10

S, B=A+20

S,: Al=C-D
I

S, A2 =B/C

Data Dependence (continued)

 Data dependence in a program may be represented using
a dependence graph G=(V,E), where the nodes V
represent statements in the program and the directed
edges E represent dependence relations.

Sy A=1.0 %
S,: B=A+20

S3: A:C_D
[

B
~_ S,: A=BIC gg 5
\/

60

sd

Value or Location?

* There are two ways a dependence is defined:
value-oriented or location-oriented.

Sy A=1.0

S,: B=A+20

Sy A=C-D
]

S, A =B/C

Example 1

doi=2,4
S+ ali) =b(i) + c(i)
S, d(i) =a(i)

end do

a(2) a(2) a(3) a(3) a(4) a(4)

o Thereisaninstance of S, that precedes an instance of S, in execution and S,
produces data that S, consumes.

o S isthe source of the dependence; S, is the sink of the dependence.

e The dependence flows between instances of statements in the same iteration
(loop-independent dependence).

e The number of iterations between source and sink (dependence distance) is
0. The dependence direction is =.

58S, o S35,

-10-

Example 2

doi=2,4
S+ ali) =b(i) + c(i)
S,» d(i)=a(i-1)
end do

& &

o Thereisaninstance of S, that precedes an instance of S, in execution and S,
produces data that S, consumes.

o S isthe source of the dependence; S, is the sink of the dependence.

e The dependence flows between instances of statements in different
iterations (loop-carried dependence).

e The dependence distance is 1. The direction is positive (<).

58S, o 5385,

-11-

Example 3

doi=2,4 S, [2]
S+ ali) =b(i) + c(i) ---

S, d(i) =a(i+1)
end do

sfial s,[4]

B

a(2) a(3) a(3) a(4) a(4) a(5)

-2 B
Q
—_— e ————

n
Q

o Thereis aninstance of S, that precedes an instance of S, in executionand S,
consumes data that S, produces.

o S, isthe source of the dependence; S, is the sink of the dependence.
e The dependence is loop-carried.

e The dependence distance is 1.

S,0. 5, or S5,8'S

Are you sure you know why it is S, 8’ s, even though S, appears before S,
in the code?

-12-

Example 4

doi=2,4
doj=2,4
S: ali,j) =al(i-1,j+1)
end do
end do

e Aninstance of S precedes
another instance of Sand S
produces data that S
consumes.

e Sis both source and sink.

e The dependence is

loop-carried.

e The dependence distance is
(11_1)'
S8 .S or S8 .S

(<,>) 1,-1

-13-

Problem Formulatio

* Consider the following perfect nest of depth d:
doI =L,V array refgrence
doI, = I1 U, - ~
et
do I,= af . &Q 0.
a(f(@ @(B) o
= 0(91 9.(1).0 ,9,(I)) subscript
function
D or
enddo subscript
enddo expression
T=(lpl,0 o)
C=(,.L,.0.L,) linear functions

by +b L, +b, L, +[] +b,I
Uz(U1,U2,D U) otb L +b, I, d +d

L<U

-14-

Problem Formulation

* Dependence will exist if there exists two iteration
vectorsk and j such thatC<k<j<U and:

o

and

| D
an
f (gm(J
e Thatis:
ﬁ(ka—%(b_o
and
f,(k)-g,(j)=0

and

[]
M)-gn() =0

Problem Formulation - Example

doi=2,4
S.: ali) =b(i) + c(i)

1

S,: d(i) = a(i-1)

2
end do

* Does there exist two iteration vectors i1 and iz,

such that
2 < i1 < i2 <4 and such that:

=i, -17
. Ans&ver:zyes; i,=2&i,=3andi =3 &i, =4.
* Hence, there is dependence!
* The dependence distance vectorisi,-i, = 1.
 The dependence direction vector is sign(1) = <.

Problem Formulation - Example

doi=2,4
S.: a(i) =b(i) + c(i)

1

s d(i) = a(i+1)

end do
 Does there exist two iteration vectors i and i, such
that
2 S =i <4 and such that:
|1=|2+1?

* Answer:yes; i,=3 &i,=2andi =4 &1i, =3. (But,
but!).

* Hence, there is dependence!

* The dependence distance vector is i -i, =-1.

* The dependence direction vector is sign(-1) = >.
* |s this possible?

Problem Formulation - Example

doi=1, 10
S.:al2*i) =b(i) + c(i)

1

S, d(i) =a(2%i+1)

end do

e Does there exist two iteration vectors i1 and
i, such that
1< i1 < i2 < 10 and such that:

2%i = 2% +17?
 Answer: no; 2*i1 is even & 2*i2+1 is odd.
* Hence, there is no dependence!

Problem Formulation

Dependence testing is equivalent to an integer linear
programming (ILP) problem of 2d variables & m+d
constraint!

An algorithm that determines if there exits two iteration
vectors k and] that satisfies these constraints is called
a dependence tester.

The dependence distance vectoris givenby 7§ - .k
The dependence direction vector is give by sign(7 - .
Dependence testing is NP-complete!

A dependence test that reports dependence only when
there is dependence is said to be exact. Otherwise it is
In-exact.

A dependence test must be conservative; if the existence
of dependence cannot be ascertained, dependence must
be assumed.

Dependence Testers

 Lamport’s Test.

* GCD Test.

* Banerjee’s Inequalities.
* Generalized GCD Test.
* Power Test.

* |-Test.

* Omega Test.

* Delta Test.

e Stanford Test.

* etc...

Lamport’s Test

Lamport’s Test is used when there is a single index variable in
the subscript expressions, and when the coefficients of the
index variable in both expressions are the same.

A0 .b*i+¢,0)=0
0 =A(0 .b*i+c,0)
The dependence problem: does there exist i, and i,, such that L
Si, =i,=U and such that

i_i:C'l_CZ')
b*i, +c =b*i_+c? or 27 b |

There is integer solution if and only if & —C2 js integer.

The dependence distanceisd = ¢—¢ ifL = |d| = U.

d>0 = true dependence. b
d=0 = loopindependent dependence.
d<0 = antidependence.

Lamport’s Test - Example

doi=1,n
doj=1,n
S: a(i,j) = a(i-1,j+1)

end do
/ end do \

i=1i,-1? j,=i,+1?
b=1;c1=0;c2=-1 b=1;c1=0;c2=1
C1—C2 _ 4 Ci—C2_ 4
b b
There is dependence. There is dependence.
Distance (i) is 1. Distance (j) is -1.

\ /

S8 ,S or S¥.,S

Lamport’s Test - Example

doi=1,n
doj=1,n
S: a(i,2*j) = a(i-1,2*j+1)

end do
/ end do \

i=1i,-1? 2%j, = 2%, +17
b=1;c1=0;c2=-1 b=2;c1=0;c2=1

b b 2
There is dependence. There is no dependence.

Distance (i) is 1.

\ /

?
There is no dependence!

GCD Test

* Given the following equation:

n
Zﬂi Xi=C ai S and c are integers
i=1

an integer solution exists if and only if:

gcd(ar,a2,00 ,an) divides ¢

* Problems:
— ignores loop bounds.
— gives no information on distance or direction of dependence.

— often gcd(......) is 1 which always divides c, resulting in false
dependences.

GCD Test - Example

doi=1,10
S, a(2%i) = b(i) + c(i)

S, d(i) =a(2%i-1)

end do

* Does there exist two iteration vectors | and i L , such that
1S i <i L < 10 and such that:

2%i, =2%i -1?
or
2%i,-2%i =17
* There will be an integer solution if and only if gcd(2,-2)
divides 1.

* This is not the case, and hence, there is no dependence!

GCD Test Example

doi=1, 10
S, ali) =b(i) + c(i)
S, d(i) =a(i-100)
end do

e Does there exist two iteration vectors | and i | , such that
1< i <i L < 10 and such that:

=1 -100?
or
-0 = 1007
* There will be an integer solution if and only if gcd(1,-1)
divides 100.
* This is the case, and hence, there is dependence! Or is
there?

Dependence Testing Complications

 Unknown loop bounds.

doi=1,N
S, ali) =a(i+10)
end do

What is the relationship between N and 10?

* Triangular loops.

doi=1,N
doj=1,i-1
S:ali,j)=alj,i)
end do
end do

Must impose j <i as an additional constraint.

More Complications

e User variables

doi=1, 10 doi=L,H
S,: ali) = a(i+k) S;: ali)=ali-1)
end do end do

Same problem as unknown loop bounds, but occur
due to some loop transformations (e.g.,
normalization).

J

doi=1, H-L
S, a(i+L) = a(i+L-1)
end do

doi=1,N
S.: x=ai

1
S,: b(i)=x
end do

sum=0
doi=1,N
S;: sum=sum +afi)
end do

-20-

More Complications: Scalars

doi=1,N
S, x(i)=af(i)

S.: b(i) = x(i)

2
end do

doi=1,N
S.: afi) =a(N-i)

end do

doi=1,N
S, sum(i) = a(i)
end do

sum += sum(i) i=1, N

Serious Complications

* Aliases.
— Equivalence Statements in Fortran:

real a(10,10), b(10)

makes b the same as the first column of a.

— Common blocks: Fortran’s way of having shared/global variables.

common /shared/a,b,c

subroutine foo (...)
common /shared/a,b,c

common /shared/x,y,z

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
a(i, j)=...
=a(i, j)

b(i, j)= ...
= b(i, j-1)
c(i, j)

c(i-1, j)

end do
end do

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
522 a(i,j)=...
' = a(i, j)

b(i, j) = ...
=b(i, j-1)

c(i, j) = ...
= c(i-1, j)
end do
end do

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
a(i, j)=...
=a(i, j)

bii, j-1)

c(i-1, j)

c(i, j)

end do
end do

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
a(i, j)=...
=a(i, j)

b(i, j)=...
= b(ll J_l)

61’_ c(i, j) = ...
o = c(i-1,])
end do
end do

Loop Parallelization

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

doi=2,n-1
doj=2,m-1
st a(i, j) = ...
o =af(i, j)
&', bi, j)= ..
= b(i, j-1)
5:: c(i,j) = ...
=c(i-1, j)
end do
end do

e Qutermost loop with a non “=“ direction carries dependence!

Loop Parallelization

The iterations of a loop may be executed in
parallel with one another if and only if no
dependences are carried by the loop!

-36-

Loop Parallelization -

doi=2,n-1 /*

doj=2,m-1

5: b(i,j) =..
. =Dbli, j-1) °

end do

end do w

¢<— join

* [terations of loop j must be executed sequentially, but
the iterations of loop i may be executed in parallel.

e Quter loop parallelism.

Loop Parallelization -

doi=2,n-1 /;
doj=2,m-1
=t b(i,j) = 3
o= . =b(L,]) =
end do
end do

* [terations of loop i must be executed sequentially, but
the iterations of loop j may be executed in parallel.

* Inner loop parallelism.

Loop Parallelization -

doi=2,n-1 /;
doj=2,m-1
<t b(i, j) = o
M . =Db(i-1,j-1) I=i+1
end do
end do

* [terations of loop i must be executed sequentially, but
the iterations of loop j may be executed in parallel.

Why?
* Inner loop parallelism.

Loop Interchange

Loop interchange changes the order of the loops to
improve the spatial locality of a program.

doj=1,n
doi=1,n
..ali,j) ...
end do
end do
2000]0000[0000]0000
P 2000]0000[0000]0000
A
v
C
A .
] |
M
pooo|ooon|ooon|oooe
YYVY YYYY VYVY YVVY

-40-

Loop Interchange

Loop interchange changes the order of the loops to
improve the spatial locality of a program.

doj=1,n doi=1,n
doi=1,n doj=1,n
..ali,j)alij) ...
end do end do
end do end do

O lel T
-4—
>
>
J
]
>
>
>
>
>
>
>
>
>
>
>
>
Yy

-41-

Loop Interchange

* Loop interchange can improve the granularity of parallelism!

doi=1,n doj=1,n
doj=1,n | doi=1,n
a(i,j) = b(i,j) a(i,j) = b(i,j)
c(i,j) = a(i-1,j) c(i,j) = a(i-1,j)
end do end do
end do end do

Loop Interchange

—_—>
1- {]]]
. I 6=,= O ¥ .
doi=1,n . . O-. doj=1,n
doj=1,n Iat T doi=1,n
.alij) ... <= D .alij) ..
end do ; ° ¢ N > end do
end do 5% 5<,> end do

* When is loop interchange legal?

-43-

Loop Interchange

_—
0—1.—>O
| == O
doi=1,n .
doj=1,n 61’ t
.alij) ... <= N

end do ° ° A
end do 6<,>

* When is loop interchange legal?

-44-

doj=1,n
doi=1,n
. ali,j) ...
end do

end do

Loop Interchange

doi=1,n doj=1,n
doj=1,n doi=1,n
.. ali,j) ali,j) ...
end do end do
end do end do

* When is loop interchange legal?

-45-

Loop Interchange

doi=1,n doj=1,n
doj=1,n doi=1,n
.. ali,j) ali,j) ...
end do end do
end do end do

 When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

-46-

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

dot=1,T
doi=1,n
doj=1,n
.. afi,j) ...
end do
end do
end do

-47-

PRy S S S S S O S S S
v W W W W W W W W w w w — _ o 1

PRy S S S S S O S S S
v W W W W W W W W w w w — _ o 1

P S S S S O S S S
v W W W W W W W W w w w — _ o 1

P S S S S O S S S
v W W W W W W W W w w w — _ o 1

P S S S S O S S S
v W W W W W W W W w w w — _ o 1

PRy S S S S S O S S S
v W W W W W W W W w w w — _ o 1

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

v
o
(@]
o
O
| -
i)
c
@)
O
(]
BI
~ C
c .
;11 ©@)
— g [° o
ey 22
O © Q
©

B: Block size

end do

-48-

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

jc=1
doic=1,n B /\S controlloops 3 T 7 o
dojc=1,n,B ;;;;;;;;oooooooo
dot=1,T - cssecsemscccssss
|C—1 ST cS22000000 00
ST cS22000000 00
ST cSe2>200000 0 00

end do cecccscescesccss
enddo 000000000000 000

end do B: Block size

-49-

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

jc =2
. control loops J
doic=1,n,B /\S P
e00000OCESI22222~
dojc=1,n,B 0000000 C==2222020>
dot=1,T cecsedeocssecsoms .
000000 ¢c-=22=2225 IC=1
0000000 C==2222a29
0000000 C==222n2a29

0000 0VOC 2222229
0 000 0O 0600000 0 00
0 000 0O 06006000 0 0 0

end do cecccscescesccss
enddo 000000000000 000

end do B: Block size

-50-

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1,n B /\S control loops
0 000000

dojc=1,n,B e0eo0o0o00o00
dot=1T SIS
0000000000
e00000000000
7000000000000

o vowo wwe =2 30000000

C S Sooes=230000000

C S Sooes=230000000

. C S Sooes=230000000

|C=2 C S Sooes=230000000

enddo C S Sooes=230000000

C S Sooes=230000000

enddo [- BN BN BN BN BN BN I)
end do B: Block size

jc=1

-51-

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

doic=1,n,B
dojc=1,n,B
dot=1,T

end do
end do
end do

/\S control loops

B: Block size

-52-

0000000006 O06OCOGOCOFOS
0000000006 O06OCOGOCOFOS
0000000006 O06OCOGOCOFOS
0 00000006006 OCGCEOGEOSOGOSO
0 00000006006 OCGCEOGEOSOGOSO
0 00000006006 OCGCEOGEOSOGOSO
0 0000220000000 0
00006 0CaO0OOGOEOOOOO

0 00 0Q8 00 S SS==2
00008 0606222
00008 0606222
00008 0606222 .
00008 0606222 IC =
00008 0606222
00008 0606222
00008 06062222

dot=1,T
doi=1,n
doj=1,n

.. ali,j) ...

end do
end do
end do

dot=1,T
doic=1,n,B
doi=1,B
dojc=1,n,B
doj=1,B

... a(ic+i-1,jc+j-1) ...

end do
end do
end do

e Whenis loop blocking legal?

Loop Blocking (Tiling)

doic=1,n,B
dojc=1,n,B
dot=1,T
doi=1,B
doj=1,B

.. afic+i-1,jc+j-1) ...

end do
end do
end do
end do
end do

CSC D70:
Compiler Optimization
Parallelization

Prof. Gennady Pekhimenko
University of Toronto
Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Tarek Abdelrahman

