
CSC D70:
Compiler Optimization

Parallelization

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Tarek Abdelrahman

Announcements

• Final exam: Monday, April 15,
 2:00-4:00pm; Room: IC200

• Covers the whole semester

• Course evaluation (right now)

2

-3-

● Flow (true) dependence: a statement Si precedes a statement Sj in
execution and Si computes a data value that Sj uses.

● Implies that Si must execute before Sj.

We define four types of data dependence.

Data Dependence

-4-

● Anti dependence: a statement Si precedes a statement Sj in execution
and Si uses a data value that Sj computes.

● It implies that Si must be executed before Sj.

We define four types of data dependence.

Data Dependence

-5-

● Output dependence: a statement Si precedes a statement Sj in
execution and Si computes a data value that Sj also computes.

● It implies that Si must be executed before Sj.

We define four types of data dependence.

Data Dependence

-6-

● Input dependence: a statement Si precedes a statement Sj in
execution and Si uses a data value that Sj also uses.

● Does this imply that Si must execute before Sj?

We define four types of data dependence.

Data Dependence

-7-

Data Dependence (continued)
• The dependence is said to flow from Si to Sj because Si

precedes Sj in execution.
• Si is said to be the source of the dependence. Sj is said to be

the sink of the dependence.
• The only “true” dependence is flow dependence; it represents

the flow of data in the program.
• The other types of dependence are caused by programming

style; they may be eliminated by re-naming.

-8-

Data Dependence (continued)
• Data dependence in a program may be represented using

a dependence graph G=(V,E), where the nodes V
represent statements in the program and the directed
edges E represent dependence relations.

S
1

S
2

S
3

S
4

δt

δα

δo

δo

δt

δI

-9-

Value or Location?

• There are two ways a dependence is defined:
value-oriented or location-oriented.

-10-

Example 1
 do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i)
 end do

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

a(2) a(2) a(3) a(3) a(4) a(4)
δt δt δt

● There is an instance of S1 that precedes an instance of S2 in execution and S1
produces data that S2 consumes.

● S1 is the source of the dependence; S2 is the sink of the dependence.

● The dependence flows between instances of statements in the same iteration
(loop-independent dependence).

● The number of iterations between source and sink (dependence distance) is
0. The dependence direction is =.

or

-11-

Example 2
 do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-1)
 end do

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

a(2) a(1) a(3) a(2) a(4) a(3)

δt δt

● There is an instance of S1 that precedes an instance of S2 in execution and S1
produces data that S2 consumes.

● S1 is the source of the dependence; S2 is the sink of the dependence.

● The dependence flows between instances of statements in different
iterations (loop-carried dependence).

● The dependence distance is 1. The direction is positive (<).

or

-12-

Example 3
 do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)
 end do

S1[2] S2[2] S1[3] S2[3] S1[4] S2[4]

i=2 i=3 i=4

a(2) a(3) a(3) a(4) a(4) a(5)
δa δa

or

● There is an instance of S2 that precedes an instance of S1 in execution and S2
consumes data that S1 produces.

● S2 is the source of the dependence; S1 is the sink of the dependence.

● The dependence is loop-carried.

● The dependence distance is 1.

● Are you sure you know why it is even though S1 appears before S2
in the code?

1
a

2 SS <δ

-13-

Example 4
 do i = 2, 4
 do j = 2, 4
 S: a(i,j) = a(i-1,j+1)
 end do
 end do

S[2,2] S[2,3] S[2,4]

S[3,2]

S[4,2]

S[3,3]

S[4,3]

S[3,4]

S[4,4]

a(1,3) a(1,4) a(1,5)

a(2,3) a(2,4) a(2,5)

a(3,3) a(3,4) a(3,5)

a(2,2) a(2,3) a(2,4)

a(3,2) a(3,3) a(3,4)

a(4,2) a(4,3) a(4,4)

δt δt

δtδt

● An instance of S precedes
another instance of S and S
produces data that S
consumes.

● S is both source and sink.

● The dependence is
loop-carried.

● The dependence distance is
(1,-1).

or

-14-

Problem Formulation
• Consider the following perfect nest of depth d:

subscript
position

array reference

subscript
function

or
subscript

expression

-15-

Problem Formulation
• Dependence will exist if there exists two iteration

vectors and such that and:

● That is:

and

and

and

and

and

and

-16-

Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2,
such that
2 ≤ i1 ≤ i2 ≤ 4 and such that:

 i1 = i2 -1?
• Answer: yes; i1=2 & i2=3 and i1=3 & i2 =4.
• Hence, there is dependence!
• The dependence distance vector is i2-i1 = 1.
• The dependence direction vector is sign(1) = <.

 do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-1)
 end do

-17-

Problem Formulation - Example

• Does there exist two iteration vectors i1 and i2, such
that
2 ≤ i1 ≤ i2 ≤ 4 and such that:

 i1 = i2 +1?
• Answer: yes; i1=3 & i2=2 and i1=4 & i2 =3. (But,

but!).
• Hence, there is dependence!
• The dependence distance vector is i2-i1 = -1.
• The dependence direction vector is sign(-1) = >.
• Is this possible?

 do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)
 end do

-18-

Problem Formulation - Example

• Does there exist two iteration vectors i1 and
i2, such that
1 ≤ i1 ≤ i2 ≤ 10 and such that:

 2*i1 = 2*i2 +1?
• Answer: no; 2*i1 is even & 2*i2+1 is odd.
• Hence, there is no dependence!

 do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i+1)
 end do

-19-

Problem Formulation
• Dependence testing is equivalent to an integer linear

programming (ILP) problem of 2d variables & m+d
constraint!

• An algorithm that determines if there exits two iteration
vectors and that satisfies these constraints is called
a dependence tester.

• The dependence distance vector is given by .
• The dependence direction vector is give by sign().
• Dependence testing is NP-complete!
• A dependence test that reports dependence only when

there is dependence is said to be exact. Otherwise it is
in-exact.

• A dependence test must be conservative; if the existence
of dependence cannot be ascertained, dependence must
be assumed.

-

-

-20-

Dependence Testers
• Lamport’s Test.
• GCD Test.
• Banerjee’s Inequalities.
• Generalized GCD Test.
• Power Test.
• I-Test.
• Omega Test.
• Delta Test.
• Stanford Test.
• etc…

-21-

Lamport’s Test
• Lamport’s Test is used when there is a single index variable in

the subscript expressions, and when the coefficients of the
index variable in both expressions are the same.

• The dependence problem: does there exist i1 and i2, such that Li
≤ i1 ≤ i2 ≤ Ui and such that

 b*i1 + c1 = b*i2 + c2? or
• There is integer solution if and only if is integer.
• The dependence distance is d = if Li ≤ |d| ≤ Ui.
• d > 0 ⇒ true dependence.

d = 0 ⇒ loop independent dependence.
d < 0 ⇒ anti dependence.

-22-

Lamport’s Test - Example

i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

There is dependence.
Distance (i) is 1.

 do i = 1, n
 do j = 1, n
 S: a(i,j) = a(i-1,j+1)
 end do
 end do

j1 = j2 + 1?

b = 1; c1 = 0; c2 = 1

There is dependence.
Distance (j) is -1.

or

-23-

Lamport’s Test - Example

i1 = i2 -1?

b = 1; c1 = 0; c2 = -1

There is dependence.
Distance (i) is 1.

 do i = 1, n
 do j = 1, n
 S: a(i,2*j) = a(i-1,2*j+1)
 end do
 end do

2*j1 = 2*j2 + 1?

b = 2; c1 = 0; c2 = 1

There is no dependence.

?
There is no dependence!

-24-

GCD Test
• Given the following equation:

an integer solution exists if and only if:

• Problems:
– ignores loop bounds.
– gives no information on distance or direction of dependence.
– often gcd(……) is 1 which always divides c, resulting in false

dependences.

-25-

GCD Test - Example

• Does there exist two iteration vectors i1 and i2, such that
1 ≤ i1 ≤ i2 ≤ 10 and such that:

 2*i1 = 2*i2 -1?
or
 2*i2 - 2*i1 = 1?

• There will be an integer solution if and only if gcd(2,-2)
divides 1.

• This is not the case, and hence, there is no dependence!

 do i = 1, 10
S1: a(2*i) = b(i) + c(i)
S2: d(i) = a(2*i-1)
 end do

-26-

GCD Test Example

• Does there exist two iteration vectors i1 and i2, such that
1 ≤ i1 ≤ i2 ≤ 10 and such that:

 i1 = i2 -100?
or
 i2 - i1 = 100?

• There will be an integer solution if and only if gcd(1,-1)
divides 100.

• This is the case, and hence, there is dependence! Or is
there?

 do i = 1, 10
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-100)
 end do

-27-

Dependence Testing Complications
• Unknown loop bounds.

What is the relationship between N and 10?

• Triangular loops.

Must impose j < i as an additional constraint.

 do i = 1, N
S1: a(i) = a(i+10)
 end do

 do i = 1, N
 do j = 1, i-1
 S: a(i,j) = a(j,i)
 end do
 end do

-28-

More Complications

• User variables

Same problem as unknown loop bounds, but occur
due to some loop transformations (e.g.,
normalization).

 do i = 1, 10
S1: a(i) = a(i+k)
 end do

 do i = L, H
S1: a(i) = a(i-1)
 end do

 do i = 1, H-L
S1: a(i+L) = a(i+L-1)
 end do

⇓

-29-

More Complications: Scalars
 do i = 1, N
S1: x = a(i)
S2: b(i) = x
 end do

 do i = 1, N
S1: x(i) = a(i)
S2: b(i) = x(i)
 end do

 j = N-1
 do i = 1, N
S1: a(i) = a(j)
S2: j = j - 1
 end do

 do i = 1, N
S1: a(i) = a(N-i)

 end do

 sum = 0
 do i = 1, N
S1: sum = sum + a(i)
 end do

 do i = 1, N
S1: sum(i) = a(i)
 end do
 sum += sum(i) i = 1, N

⇒

⇒

⇒

-30-

Serious Complications
• Aliases.

– Equivalence Statements in Fortran:

 real a(10,10), b(10)

makes b the same as the first column of a.

– Common blocks: Fortran’s way of having shared/global variables.

common /shared/a,b,c
 :
 :

subroutine foo (…)
common /shared/a,b,c

common /shared/x,y,z

-31-

Loop Parallelization

do i = 2, n-1
 do j = 2, m-1
 a(i, j) = …
 ... = a(i, j)

 b(i, j) = …
 … = b(i, j-1)

 c(i, j) = …
 … = c(i-1, j)
 end do
end do

• A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

-32-

Loop Parallelization

do i = 2, n-1
 do j = 2, m-1
 a(i, j) = …
 ... = a(i, j)

 b(i, j) = …
 … = b(i, j-1)

 c(i, j) = …
 … = c(i-1, j)
 end do
end do

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

-33-

Loop Parallelization

do i = 2, n-1
 do j = 2, m-1
 a(i, j) = …
 ... = a(i, j)

 b(i, j) = …
 … = b(i, j-1)

 c(i, j) = …
 … = c(i-1, j)
 end do
end do

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

-34-

Loop Parallelization

do i = 2, n-1
 do j = 2, m-1
 a(i, j) = …
 ... = a(i, j)

 b(i, j) = …
 … = b(i, j-1)

 c(i, j) = …
 … = c(i-1, j)
 end do
end do

A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

-35-

Loop Parallelization
A dependence is said to be carried by a loop if the loop is the
outmost loop whose removal eliminates the dependence. If a
dependence is not carried by the loop, it is loop-independent.

• Outermost loop with a non “=“ direction carries dependence!

do i = 2, n-1
 do j = 2, m-1
 a(i, j) = …
 ... = a(i, j)

 b(i, j) = …
 … = b(i, j-1)

 c(i, j) = …
 … = c(i-1, j)
 end do
end do

-36-

Loop Parallelization

The iterations of a loop may be executed in
parallel with one another if and only if no
dependences are carried by the loop!

-37-

Loop Parallelization - Example

• Iterations of loop j must be executed sequentially, but
the iterations of loop i may be executed in parallel.

• Outer loop parallelism.

do i = 2, n-1
 do j = 2, m-1
 b(i, j) = …
 … = b(i, j-1)
 end do
end do

fork

join

i=2

i=3 i=n-2

i=n-1

-38-

Loop Parallelization - Example

• Iterations of loop i must be executed sequentially, but
the iterations of loop j may be executed in parallel.

• Inner loop parallelism.

do i = 2, n-1
 do j = 2, m-1
 b(i, j) = …
 … = b(i-1, j)
 end do
end do

fork

join

j=2

j=3 j=m-2

j=m-1

i=i+1

-39-

Loop Parallelization - Example

• Iterations of loop i must be executed sequentially, but
the iterations of loop j may be executed in parallel.
Why?

• Inner loop parallelism.

do i = 2, n-1
 do j = 2, m-1
 b(i, j) = …
 … = b(i-1, j-1)
 end do
end do

fork

join

j=2

j=3 j=m-2

j=m-1

i=i+1

-40-

Loop Interchange
Loop interchange changes the order of the loops to
improve the spatial locality of a program.

do j = 1, n
 do i = 1, n
 ... a(i,j) ...
 end do
end do

M

C

P

i

j

-41-

Loop Interchange
Loop interchange changes the order of the loops to
improve the spatial locality of a program.

do j = 1, n
 do i = 1, n
 ... a(i,j) ...
 end do
end do

do i = 1, n
 do j = 1, n
 … a(i,j) ...
 end do
end do

i

j
M

C

P

-42-

Loop Interchange
• Loop interchange can improve the granularity of parallelism!

do i = 1, n
 do j = 1, n
 a(i,j) = b(i,j)
 c(i,j) = a(i-1,j)
 end do
end do

do j = 1, n
 do i = 1, n
 a(i,j) = b(i,j)
 c(i,j) = a(i-1,j)
 end do
end do

-43-

Loop Interchange

• When is loop interchange legal?

 do i = 1,n
 do j = 1,n
 … a(i,j) …
 end do
 end do

 do j = 1,n
 do i = 1,n
 … a(i,j) …
 end do
 end do

j

i

-44-

Loop Interchange

• When is loop interchange legal?

 do i = 1,n
 do j = 1,n
 … a(i,j) …
 end do
 end do

 do j = 1,n
 do i = 1,n
 … a(i,j) …
 end do
 end do

j

i

-45-

Loop Interchange

• When is loop interchange legal?

 do i = 1,n
 do j = 1,n
 … a(i,j) …
 end do
 end do

 do j = 1,n
 do i = 1,n
 … a(i,j) …
 end do
 end do

j

i

-46-

Loop Interchange

• When is loop interchange legal? when the “interchanged”
dependences remain lexiographically positive!

 do i = 1,n
 do j = 1,n
 … a(i,j) …
 end do
 end do

 do j = 1,n
 do i = 1,n
 … a(i,j) …
 end do
 end do

j

i

-47-

Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do t = 1,T
 do i = 1,n
 do j = 1,n
 … a(i,j) …
 end do
 end do
end do

-48-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
 end do
 end do
end do B: Block size

control loops

-49-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
 end do
 end do
end do

jc =1

ic =1

B: Block size

control loops

-50-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
 end do
 end do
end do

jc =2

ic =1

B: Block size

control loops

-51-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
 end do
 end do
end do

jc =1

ic =2

B: Block size

control loops

-52-

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
 end do
 end do
end do

jc =2

ic =2

B: Block size

control loops

-53-

Loop Blocking (Tiling)

do t = 1,T
 do i = 1,n
 do j = 1,n
 … a(i,j) …
 end do
 end do
end do

do t = 1,T
 do ic = 1, n, B
 do i = 1,B
 do jc = 1, n, B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
end do

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 … a(ic+i-1,jc+j-1) …
 end do
 end do
 end do
 end do
end do

● When is loop blocking legal?

CSC D70:
Compiler Optimization

Parallelization

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Tarek Abdelrahman

