CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko University of Toronto Winter 2019

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman

Announcements

 Final exam: Monday, April 15, 2:00-4:00pm; Room: IC200

• Covers the whole semester

• Course evaluation (right now)

$$S_{1}: A = 1.0$$

 $S_{2}: B = A + 2.0$
 $S_{3}: A = C - D$
 \Box
 $S_{4}: A = B/C$

- Flow (true) dependence: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_i uses.
- Implies that S_i must execute before S_i.

$$S_i \delta^{\dagger} S_j$$
 ($S_1 \delta^{\dagger} S_2$ and $S_2 \delta^{\dagger} S_4$)

$$S_{1}: A = 1.0$$

$$S_{2}: B = A + 2.0$$

$$S_{3}: A = C - D$$

$$\Box$$

$$S_{4}: A = B/C$$

- Anti dependence: a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_i computes.
- It implies that S_i must be executed before S_i.

$$S_i \delta^{\alpha} S_j$$
 ($S_2 \delta^{\alpha} S_3$)

$$S_{1}: A = 1.0$$

 $S_{2}: B = A + 2.0$
 $S_{3}: A = C - D$
 \Box
 $S_{4}: A = B/C$

- Output dependence: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_i also computes.
- It implies that S_i must be executed before S_i.

$$S_i \delta^{\circ} S_j$$
 ($S_1 \delta^{\circ} S_3$ and $S_3 \delta^{\circ} S_4$)

$$S_{1}: A = 1.0$$

 $S_{2}: B = A + 2.0$
 $S_{3}: A = C - D$
 \Box
 $S_{4}: A = B/C$

- Input dependence: a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_i also uses.
- Does this imply that S_i must execute before S_i?

$$S_i \delta^{I} S_i$$
 $(S_3 \delta^{I} S_4)$

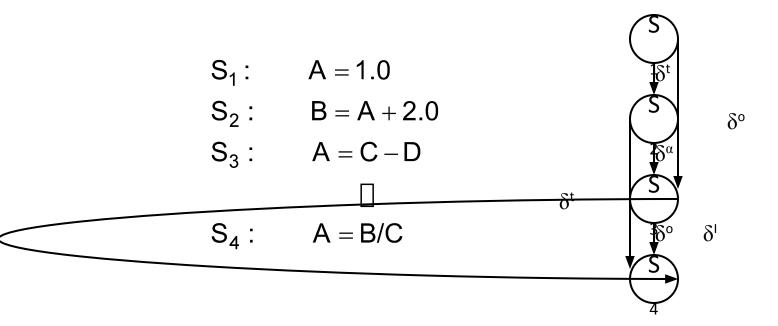
Data Dependence (continued)

- The dependence is said to flow from S_i to S_j because S_i precedes S_i in execution.
- S_i is said to be the source of the dependence. S_j is said to be the sink of the dependence.
- The only "true" dependence is flow dependence; it represents the flow of data in the program.
- The other types of dependence are caused by programming style; they may be eliminated by re-naming.

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A1 = C - D
\Box
S_{4}: A2 = B/C$$

Data Dependence (continued)

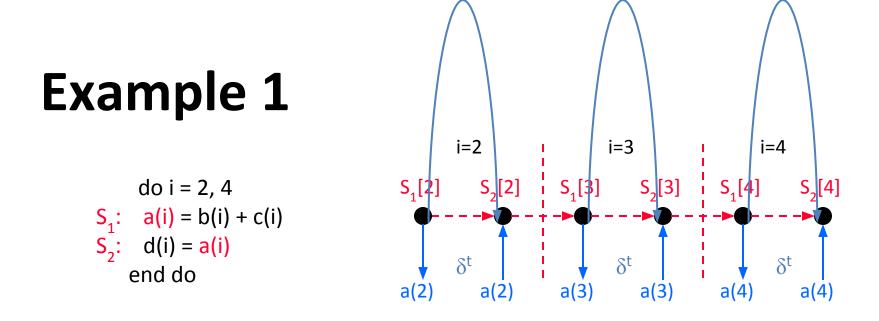
 Data dependence in a program may be represented using a dependence graph G=(V,E), where the nodes V represent statements in the program and the directed edges E represent dependence relations.



Value or Location?

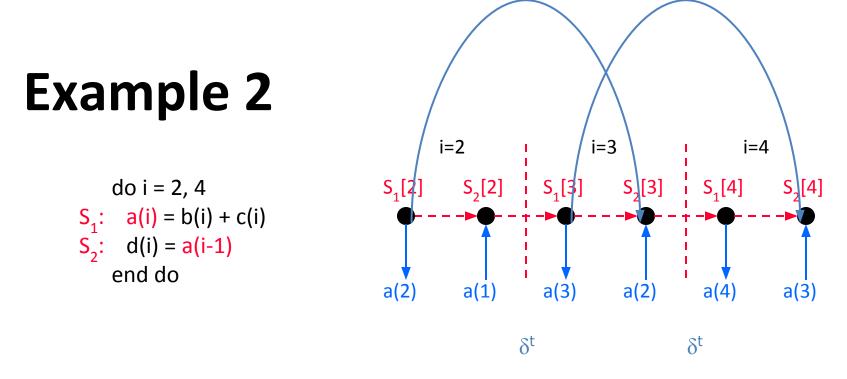
• There are two ways a dependence is defined: value-oriented or location-oriented.

$$S_1$$
:
 $A = 1.0$
 S_2 :
 $B = A + 2.0$
 S_3 :
 $A = C - D$
 \Box
 S_4 :
 $A = B/C$



- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is
 0. The dependence direction is =.

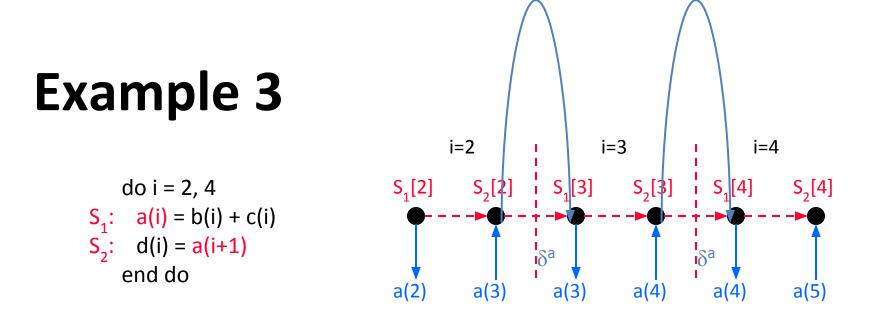
$$S_1 \delta_1^{\dagger} S_2^{\dagger}$$
 or $S_1 \delta_0^{\dagger} S_2^{\dagger}$



- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (<).

$$S_1 \delta_{<}^{\dagger} S_2$$
 or $S_1 \delta_1^{\dagger} S_2$

-11-



- There is an instance of S₂ that precedes an instance of S₁ in execution and S₂ consumes data that S₁ produces.
- S_2 is the source of the dependence; S_1 is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1.

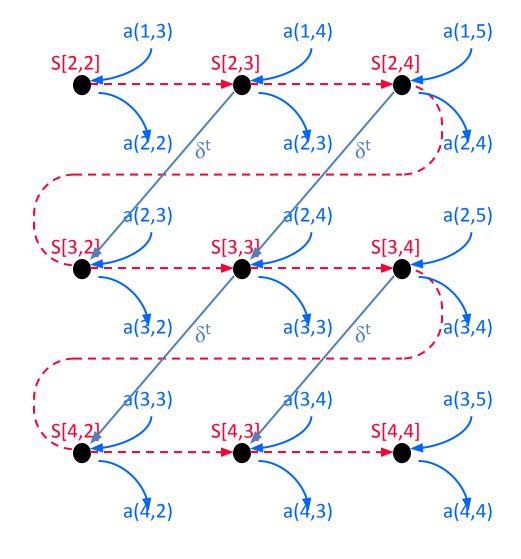
 $S_2 \, \delta_{<}^{\alpha} \, S_1$ or $S_2 \, \delta_1^{\alpha} \, S_1$

• Are you sure you know why it is $S_2 \delta_{<}^a S_1$ even though S_1 appears before S_2 in the code?

Example 4

- do i = 2, 4 do j = 2, 4 S: a(i,j) = a(i-1,j+1) end do end do
- An instance of S precedes another instance of S and S produces data that S consumes.
- S is both source and sink.
- The dependence is loop-carried.
- The dependence distance is (1,-1).

$$S\delta^{\dagger}_{(<,>)}S$$
 or $S\delta^{\dagger}_{(1,-1)}S$



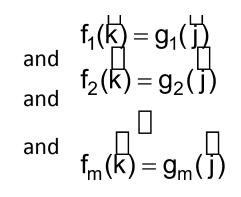
Problem Formulation

Consider the following perfect nest of depth d:

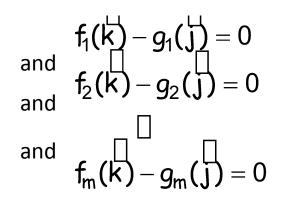
$$\begin{array}{ll} \text{do } \mathbf{I}_{1} = \mathbf{L}_{1}, \mathbf{U}_{1} \\ \text{do } \mathbf{I}_{2} = \mathbf{L}_{2}, \mathbf{U}_{2} \\ & &$$

Problem Formulation

• Dependence will exist if there exists two iteration vectors \vec{k} and \vec{j} such that $\vec{L} \le \vec{k} \le \vec{j} \le \vec{U}$ and:



• That is:



Problem Formulation - Example

do i = 2, 4 $S_1: a(i) = b(i) + c(i)$ $S_2: d(i) = a(i-1)$ end do

Does there exist two iteration vectors i₁ and i₂, such that

$$2 \leq i_1 \leq i_2 \leq 4$$
 and such that:

 $i_1 = i_2 - 1?$

- Answer: yes; $i_1 = 2 \& i_2 = 3$ and $i_1 = 3 \& i_2 = 4$.
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = 1$.
- The dependence direction vector is sign(1) = <.

Problem Formulation - Example

do i = 2, 4 $S_1: a(i) = b(i) + c(i)$ $S_2: d(i) = a(i+1)$ end do

Does there exist two iteration vectors i₁ and i₂, such that

$$2 \le i_1 \le i_2 \le 4$$
 and such that:

$$i_1 = i_2 + 1?$$

- Answer: yes; i₁=3 & i₂=2 and i₁=4 & i₂ =3. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = -1$.
- The dependence direction vector is sign(-1) = >.
- Is this possible?

Problem Formulation - Example

do i = 1, 10 $S_1: a(2*i) = b(i) + c(i)$ $S_2: d(i) = a(2*i+1)$ end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le 10$ and such that:

$2*i_1 = 2*i_2 + 1?$

- Answer: no; $2*i_1$ is even & $2*i_2+1$ is odd.
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraint!
- An algorithm that determines if there exits two iteration vectors k and j that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\frac{1}{j}$ $\frac{1}{k}$
- The dependence direction vector is give by sign($\frac{1}{1}$.
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

Lamport's Test

 Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

$$A(\Box, b^{*}i + c_{1}, \Box) = \Box$$
$$\Box = A(\Box, b^{*}i + c_{2}, \Box)$$

 The dependence problem: does there exist i₁ and i₂, such that L_i $\leq i_1 \leq i_2 \leq U_i$ and such that

$$b*i_1 + c_1 = b*i_2 + c_2?$$
 or $i_2 - i_1 = \frac{c_1 - c_2}{b}?$

- There is integer solution if and only if ^{c₁-c₂}/_b is integer.

 The dependence distance is d = c₁-c₂ if L_i^b ≤ |d| ≤ U_i.
- $d > 0 \Rightarrow$ true dependence.
 - $d = 0 \Rightarrow$ loop independent dependence.
 - $d < 0 \Rightarrow$ anti dependence.

b

Lamport's Test - Example

do j = 1, n

end do

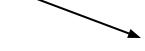
end do

S: a(i,j) = a(i-1,j+1)

 $i_1 = i_2 - 1?$

b = 1; c₁ = 0; c₂ = -1
$$\frac{c_1 - c_2}{b} = 1$$

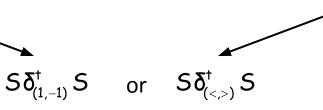
There is dependence. Distance (i) is 1.





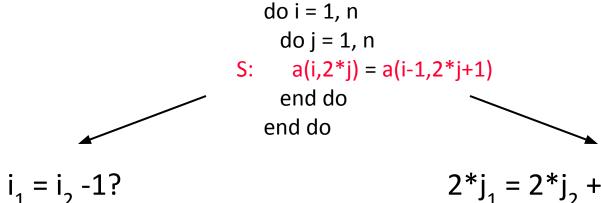
b = 1; c₁ = 0; c₂ = 1
$$\frac{c_1 - c_2}{b} = -1$$

There is dependence. Distance (j) is -1.



-22-

Lamport's Test - Example



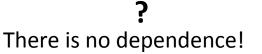
b = 1; c₁ = 0; c₂ = -1
$$\frac{c_1 - c_2}{b} = 1$$

There is dependence. Distance (i) is 1.



b = 2; c₁ = 0; c₂ = 1
$$\frac{c_1 - c_2}{b} = -\frac{1}{2}$$

There is no dependence.



GCD Test

• Given the following equation:

$$\sum_{i=1}^{n} a_i x_i = c \qquad a_i's \text{ and } c \text{ are int egers}$$

an integer solution exists if and only if:

 $gcd(a_1, a_2, \Box, a_n)$ divides c

- Problems:
 - ignores loop bounds.
 - gives no information on distance or direction of dependence.
 - often gcd(.....) is 1 which always divides c, resulting in false dependences.

GCD Test - Example

do i = 1, 10 $S_1: a(2*i) = b(i) + c(i)$ $S_2: d(i) = a(2*i-1)$ end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

or
$$2*i_1 = 2*i_2 - 1?$$

 $2*i_2 - 2*i_1 = 1?$

- There will be an integer solution if and only if gcd(2,-2) divides 1.
- This is not the case, and hence, there is no dependence!

GCD Test Example

do i = 1, 10

$$S_1: a(i) = b(i) + c(i)$$

 $S_2: d(i) = a(i-100)$
end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

or
$$i_1 = i_2 - 100?$$

$$i_2 - i_1 = 100?$$

- There will be an integer solution if and only if gcd(1,-1) divides 100.
- This is the case, and hence, there is dependence! Or is there?

Dependence Testing Complications

• Unknown loop bounds.

do i = 1, N S₁: a(i) = a(i+10) end do

What is the relationship between N and 10?

• Triangular loops.

Must impose j < i as an additional constraint.

More Complications

• User variables

do i = 1, 10 $S_1: a(i) = a(i+k)$ end do do i = L, H $S_1: a(i) = a(i-1)$ end do do i = L, H

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).

More Complications: Scalars

do i = 1, N $S_1: x = a(i)$ $S_2: b(i) = x$ end do	⇒	do i = 1, N $S_1: x(i) = a(i)$ $S_2: b(i) = x(i)$ end do
j = N-1 do i = 1, N S ₁ : a(i) = a(j) S ₂ : j = j - 1 end do	⇒	do i = 1, N S ₁ : a(i) = a(N-i) end do
sum = 0 do i = 1, N $S_{1}: sum = sum + a(i)$ end do	⇒	do i = 1, N S ₁ : sum(i) = a(i) end do sum += sum(i) i = 1, N

Serious Complications

- Aliases.
 - Equivalence Statements in Fortran:

```
real a(10,10), b(10)
```

makes b the same as the first column of a.

- Common blocks: Fortran's way of having shared/global variables.

```
common /shared/a,b,c
```

subroutine foo (...) common /shared/a,b,c

```
common /shared/x,y,z
```

• A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
do j = 2, m-1

$$a(i, j) = ...$$

 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
do j = 2, m-1

$$\delta_{=,=}^{\dagger}$$
 $a(i, j) = ...$
 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $c(i, j) = ...$
 $... = c(i-1, j)$
end do
end do

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
do j = 2, m-1
a(i, j) = ...
... = a(i, j)

$$\delta^{\dagger}_{=,<}$$
 $b(i, j) = ...$
... = b(i, j-1)
c(i, j) = ...
... = c(i-1, j)
end do
end do

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
do j = 2, m-1

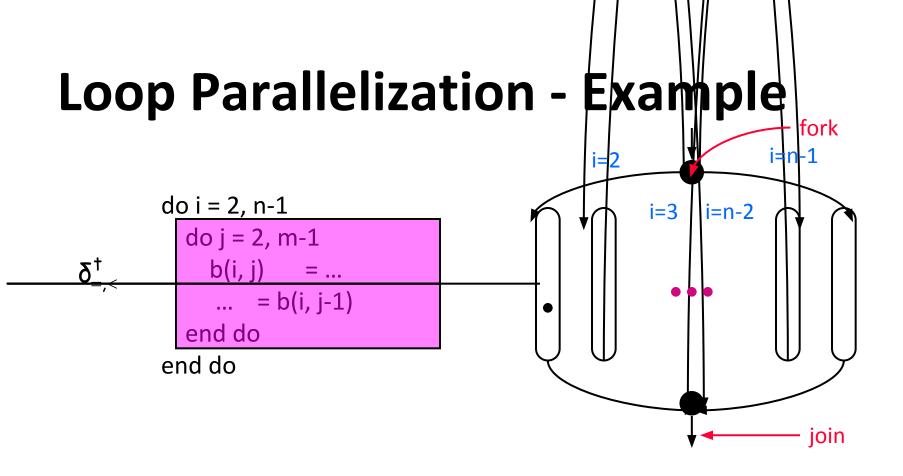
$$a(i, j) = ...$$

 $... = a(i, j)$
 $b(i, j) = ...$
 $... = b(i, j-1)$
 $\delta^{\dagger}_{<,=} = \frac{c(i, j)}{... = c(i-1, j)}$
end do
end do

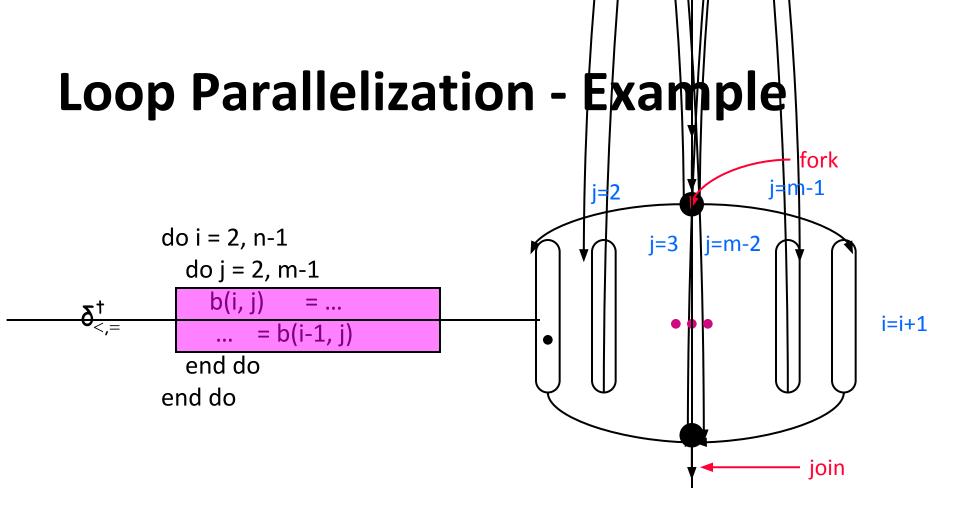
A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

• Outermost loop with a non "=" direction carries dependence!

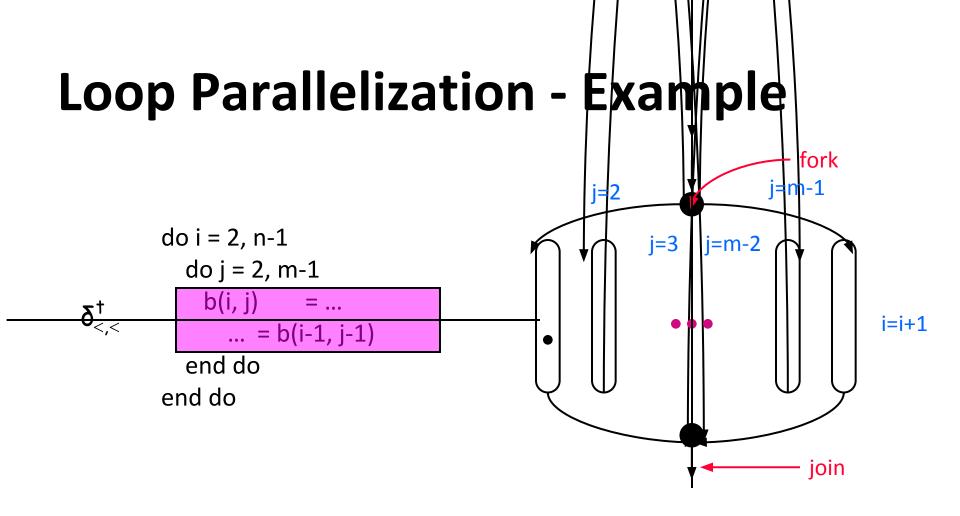
The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!



- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel.
- Outer loop parallelism.



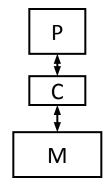
- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
- Inner loop parallelism.

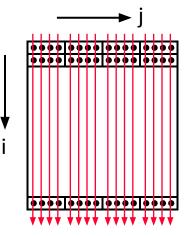


- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel. Why?
- Inner loop parallelism.

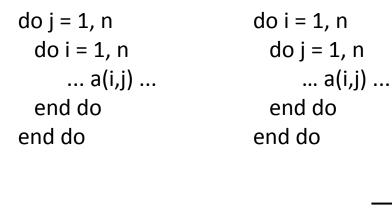
Loop interchange changes the order of the loops to improve the spatial locality of a program.

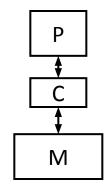
```
do j = 1, n
do i = 1, n
... a(i,j) ...
end do
end do
```

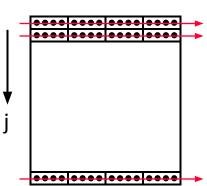




Loop interchange changes the order of the loops to improve the spatial locality of a program.





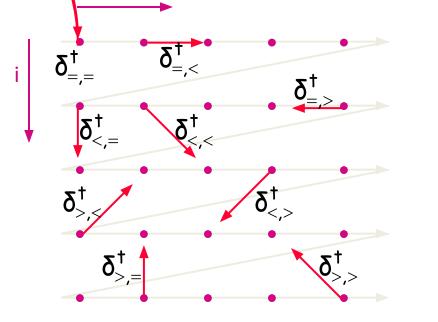


• Loop interchange can improve the granularity of parallelism!

 $\delta^{\dagger}_{<,=}$

$$\delta^{\dagger}_{=,<}$$

do i = 1,n do j = 1,n ... a(i,j) ... end do end do

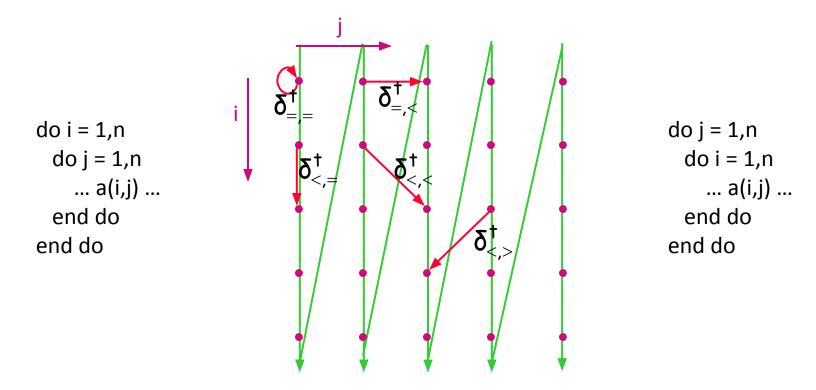


do j = 1,n do i = 1,n ... a(i,j) ... end do end do

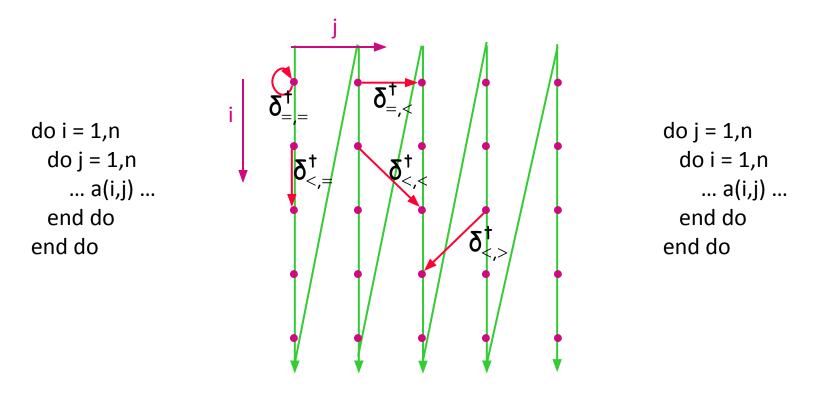
• When is loop interchange legal?



• When is loop interchange legal?

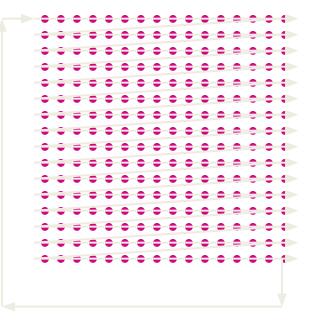


• When is loop interchange legal?



• When is loop interchange legal? when the "interchanged" dependences remain lexiographically positive!

Exploits temporal locality in a loop nest.



Exploits temporal locality in a loop nest.

do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,B ... a(ic+i-1,jc+j-1) ... end do end do end do end do B: Block size

Exploits temporal locality in a loop nest.

do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,B... = a(ic+i-1,jc+j-1) ...end do end do end do end do end do B: Block size

Exploits temporal locality in a loop nest.

do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,Ba(ic+i-1,jc+j-1) ... end do end do end do end do B: Block size

Exploits temporal locality in a loop nest.

do ic = 1, n, B
do jc = 1, n, B
do t = 1,T
do i = 1,B
do j = 1,B
... a(ic+i-1,jc+j-1) ...
end do

jc =1

ic =2

Exploits temporal locality in a loop nest.

do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,B ... a(ic+i-1,jc+j-1) ... end do end do end do end do end do B: Block size

ic =2

jc =2

Loop Blocking (Tiling)

do t = 1,T do i = 1,n do j = 1,n ... a(i,j) ... end do end do end do do t = 1,T
do ic = 1, n, B
do i = 1,B
do jc = 1, n, B
do j = 1,B
... a(ic+i-1,jc+j-1) ...
end do
end do
end do
end do

do ic = 1, n, B do jc = 1, n, B do t = 1,T do i = 1,B do j = 1,B ... a(ic+i-1,jc+j-1) ... end do end do end do end do end do end do

When is loop blocking legal?

CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko University of Toronto Winter 2019

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman